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Abstract

Proteins are an essential element of biology, performing most functions within the1

cell. Understanding their structure and function is paramount in various fields such2

as drug discovery, structural biology, and beyond. Central to this understanding3

is the identification of protein domains, which are the functional units of proteins4

responsible for their behavior. Traditionally, protein domain recognition has relied5

on methods that suffer from drawbacks in either efficiency or accuracy. This6

paper presents a novel approach to protein domain recognition (PDR) applying7

Convolutional Neural Networks to protein sequence data.8

1 Introduction9

There is potential for a method of identifying Protein Binding Domains that is both fast and accurate.10

Identifying protein domains involves mapping domain signatures onto protein sequences to determine11

the locations of discrete functional units. Seemingly applicable methods such as sequence alignment12

fall short due to their inability to penalize errors differently based on their position in the sequence,13

which is a key feature of an effective protein domain detection method because we need to penalize14

errors in regions that we expect to be highly conserved more harshly. Moreover, existing tools such as15

HMMER, while accurate, suffer from inherent computational inefficiency, particularly when dealing16

with large datasets. In particular, HMMER, as its name implies, uses a hidden Markov model to detect17

protein domains, and this necessitates using the Viterbi decoding alogorithm, which is quite slow.18

In forming the dataset for training our model, we ran HMMER to search for one domain amongst19

about 107,000 sequences, and found that it took about one third of a second per sequence. While this20

may sound relatively fast, this limitation becomes increasingly problematic given the vast amount of21

protein sequence data available, with databases like UniProt containing tens of millions of protein22

sequences.23

1.1 Inspiration from Object Recognition24

Recognizing the parallels between protein sequences and image data, this paper assesses the viability25

of techniques from the field of object recognition to the problem of protein domain identification.26

Object detection has seen significant advancements in recent years, particularly with the widespread27

adoption of CNNs. By applying CNNs to protein sequences, the latest advancements in image28

recognition techniques may potentially be leveraged for the problem of PDR. In particular, we would29

like to acknowledge that we took inspiration in designing our CNN model from the object detection30

method proposed in the paper "Objects as Points" (Zhou et. al., 2019).31

1.2 Spatial vs. Sequential Data32

Fundamentally, images represent spatial data, and amino acids represent sequential data (amino acid33

sequences). However, convolutions are still an applicable technique for protein domain detection,34



because in image recognition we want to extract local features from a larger image to identify objects35

and in domain detection we want to extract local features from a protein sequence to identify specific36

domains.37

1.3 CNNs38

The fundamental goal remains the same: distinguishing distinct motifs or regions within the data.39

Using CNNs for protein domain detection offers several potential advantages over traditional methods40

and existing tools. The time complexity of CNN convolution is linear in the input size. This represents41

a potential time complexity advantage relative to HMM approaches which make use of the Viterbi42

decoding algorithm (or another similar algorithm). Thus, a CNN approach could significantly enhance43

the speed of PDR, but, given enough training data, it also holds the promise of improving accuracy44

by capturing nuanced patterns within protein sequences missed by competing approaches. However,45

one key point that must be acknowledged is that, practically, for HMM models to be faster, they must46

have relatively small convolutional kernels (to reduce the size of the matrix multiplications being47

performed) and a small number of layers, since HMMER has been highly optimized, and beating it48

in terms of speed requires a lightweight model.49

1.4 Structural Alignment50

Structural alignment has been used for motif recognition, where the alignment algorithm itself can51

be done in polynomial time (Singh and Saha). For any conserved motif, its structure should be52

relatively conserved for a common / similar function. Therefore, even if the amino acid sequence is53

not well conserved, the overall structure should still be relatively conserved to be considered the same54

motif (Illergård et al., 2009). In particular, it is expected that two proteins (or their sub-sequences)55

will have highly conserved structures if they share 70 percent sequence identity. However, if the56

sequence identity falls below 30 percent, the structural conservation is no longer guaranteed (Ding57

and Dokholyan, 2006). Therefore, it might be reasonable to use structural alignment for samples58

that other methods (like CNN) failed to produce confident predictions for, and those which have59

poor amino acid alignments (sequence identity). This process is expected to give highly accurate60

prediction of both the existence and the location of the motif based on RMSD (root mean squared61

deviation, the standard metric for structural alignment, Singh and Saha) and location aligned.62

2 Methods63

2.1 Training Data64

Our approach made use of the slow-but-accurate tool HMMER to generate training data in order to65

train a convolutional neural network to detect the locations of domains within the protein sequence.66

Our initial set of protein sequences comes from the PANTHER database, a curated database of67

gene and protein families (Mi et. al., 2005). It consists of approximately 107,000 partial and full-68

length protein sequences, drawn from the family, PTHR45527, of nonribosomal peptide synthetases.69

The two domains we decided to search for were domains that are known to be included in many70

nonribosomal peptide synthetases, PF00668, a condensation domain, which catalyzes formation of71

the peptide bond during nonribosomal peptide synthesis, and PF00501, which is an AMP binding72

domain, where the synthetase binds AMP, which is bound to the amino acid substrate during the73

synthesis process. Both of these domains, and their seed alignments, which we fed into HMMER,74

come from the PFAM protein family database (Punta et. al., 2012).75

Once we had our two protein domains and our nonribosomal peptide synthetase sequences, we used76

HMMER to generate our training dataset. We used HMMER with the default parameters to find all77

hits for each domain in the protein sequences, and we made use of the pyHMMER API Pipeline7 with78

our two domain seed alignments to perform our HMMER queries (Laralde and Zeller, 2023). Then,79

we tried two different methods for identifying domain keypoints in the protein sequence based on80

HMMER’s output. The first method was to simply label the center of the domain (halfway between81
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the predicted envelope start and envelope end given by HMMER) as a keypoint, and a second method,82

which we tried after realizing that insertions and deletions could cause the “center” of the domain to83

be shifted to different points of the sequence and that the center of the domain is not guaranteed to be84

a well-conserved region.85

For the second method, we used the consensus sequence from our HMM, and for each domain found86

the length-10 window that contained the most “highly conserved” residues as classified by HMMER.87

Highly conserved residues are considered to be those with an emission probability of at least 5088

percent by HMMER, and we selected a window size of 10 amino acids, since we found that increasing89

the window size beyond 10 did not increase the number of highly conserved residues within the90

window beyond what was found with 10. The number of conserved residues in the window was 5 for91

domain 00668 and 10 for 000501, and remained at 5 for 00668, and only increased to 11 for 0050192

when we increased window size to 30, so we decided to use the 10 window size most-conserved93

regions as keypoints for each motif. Then, using the local multiple sequence alignment yielded by the94

hmmsearch, for each hit’s protein sequence, we mapped the location that was aligned to the center95

of this size-10 window to its index in the original protein sequence to give us the location of the96

conserved window in the protein domain.97

2.2 Model Training98

Once we had our set of sequences with hits for each domain, and locations of keypoints within those99

domains, we needed to convert these sequences and keypoint locations to inputs and targets for our100

model. Converting the sequences to inputs was easy enough. We encoded sequences as vectors both101

by trying a one-hot encoding, and by assigning each amino acid a number in the range 1 to 20. We102

turned the keypoint locations into targets for our model using a method inspired by the method used103

in the image object detection paper, “Objects as Points”. As they did for objects in the paper, we104

“splatted” the keypoint for the domain over the vector using a gaussian kernel, adapting their method105

from two dimensions to one, using the following formula:106

V (i) = e
−(i−c)2

2σ2

adapted from Zhou et. al., where V is our target vector, i is the index in that vector, and c is the107

location of our center (Zhou et. al., 2019). We used this dataset of approximately 70,700 hits for108

domain PF00668 and 85,700 hits for domain PF00501 to train distinct models for each of the two109

domains, using an 80/20 train/test split.110

Then, it came time to design and train our model. Based, once again, on the method used in the paper111

“Objects as Points”, we used sigmoid focal loss to train our model. Focal loss is typically used by112

object detection methods because it helps deal with the issue of sparseness of objects/object centers113

in the image. This is applicable to the protein domain detection problem, because we have relatively114

few domains/domain centers as compared to non-domain points.115

We tried several different architectures for the model, each with different numbers of convolutional116

layers, linear layers, and different Gaussian sigmas (higher sigmas “splatted” out the keypoints over a117

larger area of the target vector). In building our model, we made use of PyTorch’s nn.Conv1D layers118

for our convolutions, and nn.Linear layers (Paszke et. al., 2017).119

2.3 Structure File and Alignment120

To test the accuracy of structural alignment for predicting the existence of motifs, structural informa-121

tion is extracted from the UniProt database by searching both the PF00501 and PF00668 families122

and downloading the PDB files. Due to the limited availability of X-ray crystallography and NMR123

data, all PDB files used are AlphaFold prediction results. It is expected that the predicted structures124

can be used as inputs, otherwise, any structural alignment would require experimentally determined125

structures and would be completely impractical. From the HMM determined motifs, we chose one126

that had the minimal length and searched it against the PDB database. We chose the best match127

structure (6p1j) and used pymol to save a copy of the substructure based on sequence alignment (65128
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percent sequence identity, expected to have highly similar structure) to use as a reference structure.129

We used the pymol align function to carry out the alignment. This function first does a sequence130

alignment between the reference structure of the motif and the structure of the target protein, then131

continues with a structural alignment, returning the RMSD (Align).132

3 Results133

3.1 CNNs134

The metric we decided to use to measure the performance of our model is the percentage of actual135

motif centers or keypoints (as given by our target vectors) within a threshold of amino acid distance136

from the center predicted by our model. Though it would be nice to use some sort of ground truth137

data for domain centers and keypoints, we didn’t find many datasets of this sort available, and since138

our CNN method is aiming to perform similarly to HMMER at faster speeds, rather than explicitly139

trying to improve performance, we decided that comparing to the HMMER-predicted centers and140

keypoints was appropriate. Additionally, adding a distance threshold allowed us to examine whether141

the model’s predictions were generally close to correct, or completely in the wrong region.142

Condensation Domain AMP Binding Domain
Accuracy Threshold (Within X AAs) 10 50 100 10 50 100

C=1, L=1, [31], σ = 30 1.15% 5.27% 10.6% 1.38% 5.67% 10.9%
C=2, L=0, [5,3],

σ = 30
2.75% 14.9% 29.2% 4.38% 13.4% 29.4%

C=3, [11,11,11], σ = 30 1.62% 16.4% 29.9% 3.02% 10.6% 22.3%
C=2, L=0, [5,3],
σ = 30, One-Hot 4.7% 20.9% 38.2% 5.16% 23.3% 41.0%

C=2, L=1, [5,3],
σ = 30, One-Hot 0.95% 4.79% 9.57% 1.06% 4.91% 9.7%

Table 1: Center Prediction Results: Results using centers as keypoints for domains. Performance was
generally poor, the best setting was found to be two convolutional layers, the first with a kernel size of
5, and the second with a kernel size of 3, and a gaussian sigma of 30, using a one hot encoding. In the
lefthand column of the table we have the model parameters, with C being the number of convolutional
layers, L being the number of fully connected linear layers, and sigma being the parameter used for
the gaussian. The first three sets of results in the table were derived using the integer (1-20) encodings
of the amino acid, while the last two sets of results were derived using the one-hot encoding.

Condensation Domain AMP Binding Domain
Accuracy Threshold (Within X AAs) 10 50 100 10 50 100

C=2, L=1, [3,3], σ = 30 1.06% 4.92% 9.75% 1.07% 4.86% 9.62%
C=2, L=0, [5,3],

σ = 5, 1.72% 11.14% 23.54% 1.3% 9.83% 19.1%

C=1, L=0, [7],
σ = 5, .75% 12.3% 22.17% 0.9% 9.28% 19.34%

Table 2: Keypoint Prediction Results: Results using conserved locations as keypoints for domains.
Performance was still generally poor, though the best model was once again the 5-width and 3-width
kernel. All models shown here are trained using the one-hot encodings.

Overall, in spite of trying a variety of choices of hyperparameters, the results were pretty poor, and143

not much better than we would expect from random chance, both when predicting the center-points of144

the domains, and when predicting using keypoints. For both methods, the kernel size of five followed145

by a kernel size of three performed relatively well, but overall, performance was disappointing.146

3.2 Structural Alignment147

Each structure used was manually downloaded from the UniProt database, and as a result, only 20148

structures were inspected (10 from each protein family). In general, the structural alignment did149
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very well in separating proteins that contained the real motif (PF0068 chosen) from ones that do not150

contain the motif (from PF00501).151

Table 3: Structural Alignment Results

contain motif no motif
RMSD Match RMSD Match
1.519 36.5 14.606 32
1.156 64 15.254 25.5
1.504 37.5 6.475 28.5
1.132 64 12.039 31.5
1.156 59 9.074 23
1.570 39.5 10.744 26
1.074 59 9.231 35.5
1.528 38.5 6.409 38.5
1.160 61 4.672 40
1.463 36.5 6.126 27

Table 4: The RMSD and sequence match score: As shown above, difference in RMSD separated
proteins that contain motif from ones that do not. Which, the sequence matching 30-40 percent fails
to distinguish between the two groups.

As shown in Table 4, when the amino acid sequence is aligned to the reference substructure amino152

acid sequence, a 30 to 40 percent matching score cannot decide if the protein contains the motif PF153

00668. However, the true motifs when aligned with the reference structure return much lower RMSD154

(less than 2) when compared to false ones (only matching the sequences, RMSD > 4).155

One AlphaFold prediction was done on >A0A073JYF7 (containtrue motif) which took 1.5 hours for156

377 amino acids. The resulting predicted structure aligned to the reference structure with RMSD =157

0.998158

4 Conclusions159

This paper explored various convolution-based architectures for predicting the locations of the160

Condensation Domain (PF00668) and AMP Binding Domain (PF00501) in protein sequences.161

Different combinations of convolutional and linear layers, kernel sizes, encoding methods (one-hot162

and integer), and regularization techniques (dropout and batch normalization) were experimented163

with. However, models generally struggled to achieve high accuracy, with the best architecture164

performing only around 5% accuracy within a range of 50 amino acids of the correct domain location165

for the condensation domain and around 23% for the AMP binding domain.166

A potential explanation for the poor performance lies in the nature of the domain sequences themselves.167

By examining multiple sequence alignments of these domains, while the domains have conserved168

motifs, we recognized that there are some residues that are highly conserved, but even fairly conserved169

residues can have multiple common amino acids at that spot, which complicates domain identification.170

Another potential explanation is that there is some flaw in our model design, in the way we adapted171

methods from object recognition spaces, the way we generated our training data, the way we designed172

our model, or the way we set our hyperparameters.173

The structural alignment performed well with the limited samples tested. However, to conclude its174

accuracy or efficiency, many more samples are needed. This points to a major problem with this175

approach. The structure alignment requires structural data (PDB) to operate, which turns out to be176

very hard to find. Most of the sequences do not have a resolved or predicted structure (not even a177

structure with enough sequence similarity) readily available, causing the need for another prediction178

of structure (AlphaFold 2). This prediction can take very long (15 min for approximately 300 amino179

acids, or hours / days with the 10k+ amino acids for many of the inputs used). This is contradictory180

with our goal of finding a more efficient algorithm, though structural alignment may still be a useful181

technique for specific cases where our predictions using other methods have low confidence.182
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Moving forward, several key strategies could potentially improve performance for the CNN model.183

First, training data could incorporate locations of multiple conserved locations in the domain sequence184

as key points. By leveraging these key points as anchors, the models may be better equipped to185

navigate the sequence variability and localize the domains more accurately, though it would require186

development to interpolate between them. Additionally, should you want to expand this model187

out from a proof of concept to a more useful tool, negative examples would need to be introduced188

into training data to prevent the model from predicting that there is a relevant domain within every189

inputted protein sequence. Additionally, for this model to be useful, it would likely need to be trained190

to identify a wide variety of motifs, rather than a single motif, as training an individual model for191

every possible motif does not seem very feasible. Another way to potentially improve performance192

would be to use more informative embeddings to represent amino acids. The one-hot and integer193

based encodings we used for amino acids are not very informative, and so, using more informative194

embeddings, which take into account the chemical features of the amino acids might allow the model195

to learn more readily.196

Overall, developing new machine learning methods, or even just applying existing methods to a new197

domain, is more of an art than a science, and it appears that our CNN method would require some198

more examination and improvement to become a reasonable option for protein domain detection.199

However, we still believe that applying object detection methods to the problem of protein domain200

detection is an interesting prospect, and could possibly yield gains over more traditional methods in201

accuracy or speed, especially with the large amounts of training data that are becoming available.202

6



References203

“Align.” PyMOLWiki, 6 Dec. 2017, pymolwiki.org/index.php/Align.204

Ding, Feng, and Nikolay V Dokholyan. “Emergence of Protein Fold Families through Ra-205

tional Design.” PLOS Computational Biology, Public Library of Science, 7 July 2006, jour-206

nals.plos.org/ploscompbiol/article?id=10.1371207

Finn, Robert D., et al. “HMMER Web Server: Interactive Sequence Similarity Searching.” Nucleic208

Acids Research, vol. 39, no. Web Server issue, July 2011, pp. W29–37. PubMed Central,209

https://doi.org/10.1093/nar/gkr367.210

Hunter, Sarah, et al. “InterPro: The Integrative Protein Signature Database.” Nucleic Acids Research, vol. 37,211

no. Database issue, Jan. 2009, pp. D211-215. PubMed, https://doi.org/10.1093/nar/gkn785.212

Illergård, Kristoffer, et al. “Structure Is Three to Ten Times More Conserved than Sequence—A Study of213

Structural Response in Protein Cores.” WILEY Online Library, proteins, 15 Nov. 2009, onlinelibrary.wiley.com/.214

Larralde, Martin, and Georg Zeller. “PyHMMER: A Python Library Binding to HMMER for Efficient Sequence215

Analysis.” Bioinformatics, edited by Can Alkan, vol. 39, no. 5, May 2023, p. btad214. DOI.org (Crossref),216

https://doi.org/10.1093/bioinformatics/btad214.217

Mi, Huaiyu, et al. “The PANTHER Database of Protein Families, Subfamilies, Functions and Pathways.”218

Nucleic Acids Research, vol. 33, no. Database Issue, Jan. 2005, pp. D284–88. PubMed Central,219

https://doi.org/10.1093/nar/gki078.220

Paszke, Adam, et al. Automatic Differentiation in PyTorch. Oct. 2017. openreview.net,221

https://openreview.net/forum?id=BJJsrmfCZ.222

Punta, Marco, et al. “The Pfam Protein Families Database.” Nucleic Acids Research, vol. 40, no. Database issue,223

Jan. 2012, pp. D290-301. PubMed, https://doi.org/10.1093/nar/gkr1065.224

Rives, Alexander, et al. “Biological Structure and Function Emerge from Scaling Unsupervised Learning to 250225

Million Protein Sequences.” Proceedings of the National Academy of Sciences, vol. 118, no. 15, Apr. 2021, p.226

e2016239118. DOI.org (Crossref), https://doi.org/10.1073/pnas.2016239118.227

Singh, Rohit, and Mitul Saha. “Identifying Structural Motifs in Proteins.” Pacific Symposium on228

Biocomputing. Pacific Symposium on Biocomputing, U.S. National Library of Medicine, 2003,229

pubmed.ncbi.nlm.nih.gov/12603031/.230

UniProt. https://www.uniprot.org/help/uniprotkb. Accessed 10 Apr. 2024. Wang, Yan, et al. “Protein Domain231

Identification Methods and Online Resources.” Computational and Structural Biotechnology Journal, vol. 19,232

Feb. 2021, pp. 1145–53. PubMed Central, https://doi.org/10.1016/j.csbj.2021.01.041.233

Zhou, Xingyi, et al. Objects as Points. arXiv:1904.07850, arXiv, 25 Apr. 2019. arXiv.org,234

https://doi.org/10.48550/arXiv.1904.07850.235

7


	Introduction
	Inspiration from Object Recognition
	Spatial vs. Sequential Data
	CNNs
	Structural Alignment

	Methods
	Training Data
	Model Training
	Structure File and Alignment

	Results
	CNNs
	Structural Alignment

	Conclusions

